\(\int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx\) [125]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 105 \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=-\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x}+\frac {c \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2}{2 b \sqrt {1+c^2 x^2}}+\frac {b c \sqrt {d+c^2 d x^2} \log (x)}{\sqrt {1+c^2 x^2}} \]

[Out]

-(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x+1/2*c*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)/b/(c^2*x^2+1)^(1/2)+b
*c*ln(x)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {5805, 29, 5783} \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\frac {c \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2}{2 b \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{x}+\frac {b c \log (x) \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}} \]

[In]

Int[(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/x^2,x]

[Out]

-((Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/x) + (c*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/(2*b*Sqrt[1 +
 c^2*x^2]) + (b*c*Sqrt[d + c^2*d*x^2]*Log[x])/Sqrt[1 + c^2*x^2]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5805

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 1))), x] + (-Dist[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d
 + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x] - Dist[(c^2/(f^2*(m + 1))
)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(f*x)^(m + 2)*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x
]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x}+\frac {\left (b c \sqrt {d+c^2 d x^2}\right ) \int \frac {1}{x} \, dx}{\sqrt {1+c^2 x^2}}+\frac {\left (c^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {a+b \text {arcsinh}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {1+c^2 x^2}} \\ & = -\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x}+\frac {c \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2}{2 b \sqrt {1+c^2 x^2}}+\frac {b c \sqrt {d+c^2 d x^2} \log (x)}{\sqrt {1+c^2 x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.23 \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=-\frac {a \sqrt {d \left (1+c^2 x^2\right )}}{x}+\frac {b c \sqrt {d \left (1+c^2 x^2\right )} \left (-\frac {2 \sqrt {1+c^2 x^2} \text {arcsinh}(c x)}{c x}+\text {arcsinh}(c x)^2+2 \log (c x)\right )}{2 \sqrt {1+c^2 x^2}}+a c \sqrt {d} \log \left (c d x+\sqrt {d} \sqrt {d \left (1+c^2 x^2\right )}\right ) \]

[In]

Integrate[(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/x^2,x]

[Out]

-((a*Sqrt[d*(1 + c^2*x^2)])/x) + (b*c*Sqrt[d*(1 + c^2*x^2)]*((-2*Sqrt[1 + c^2*x^2]*ArcSinh[c*x])/(c*x) + ArcSi
nh[c*x]^2 + 2*Log[c*x]))/(2*Sqrt[1 + c^2*x^2]) + a*c*Sqrt[d]*Log[c*d*x + Sqrt[d]*Sqrt[d*(1 + c^2*x^2)]]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(250\) vs. \(2(93)=186\).

Time = 0.21 (sec) , antiderivative size = 251, normalized size of antiderivative = 2.39

method result size
default \(-\frac {a \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{d x}+a \,c^{2} x \sqrt {c^{2} d \,x^{2}+d}+\frac {a \,c^{2} d \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{\sqrt {c^{2} d}}+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right )^{2} c}{2 \sqrt {c^{2} x^{2}+1}}-\frac {2 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right ) c}{\sqrt {c^{2} x^{2}+1}}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \operatorname {arcsinh}\left (c x \right )}{x \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right ) c}{\sqrt {c^{2} x^{2}+1}}\right )\) \(251\)
parts \(-\frac {a \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{d x}+a \,c^{2} x \sqrt {c^{2} d \,x^{2}+d}+\frac {a \,c^{2} d \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{\sqrt {c^{2} d}}+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right )^{2} c}{2 \sqrt {c^{2} x^{2}+1}}-\frac {2 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right ) c}{\sqrt {c^{2} x^{2}+1}}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \operatorname {arcsinh}\left (c x \right )}{x \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right ) c}{\sqrt {c^{2} x^{2}+1}}\right )\) \(251\)

[In]

int((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-a/d/x*(c^2*d*x^2+d)^(3/2)+a*c^2*x*(c^2*d*x^2+d)^(1/2)+a*c^2*d*ln(c^2*d*x/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(
c^2*d)^(1/2)+b*(1/2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)^2*c-2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+
1)^(1/2)*arcsinh(c*x)*c-(d*(c^2*x^2+1))^(1/2)*(c^2*x^2-c*x*(c^2*x^2+1)^(1/2)+1)*arcsinh(c*x)/x/(c^2*x^2+1)+(d*
(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*ln((c*x+(c^2*x^2+1)^(1/2))^2-1)*c)

Fricas [F]

\[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int { \frac {\sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{2}} \,d x } \]

[In]

integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/x^2, x)

Sympy [F]

\[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int \frac {\sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{x^{2}}\, dx \]

[In]

integrate((a+b*asinh(c*x))*(c**2*d*x**2+d)**(1/2)/x**2,x)

[Out]

Integral(sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x))/x**2, x)

Maxima [F]

\[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int { \frac {\sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{2}} \,d x } \]

[In]

integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="maxima")

[Out]

(c*sqrt(d)*arcsinh(c*x) - sqrt(c^2*d*x^2 + d)/x)*a + b*integrate(sqrt(c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 +
1))/x^2, x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {d\,c^2\,x^2+d}}{x^2} \,d x \]

[In]

int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2))/x^2,x)

[Out]

int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2))/x^2, x)